
contact@madshield.xyz 19 Dec, 2024

Carrot Program Audit Report
–Mad Shield

David P – david@fomo3d.app david@madshield.xyz

BlueWolf – wolf@madshield.xyz

mailto:contact@madshield.xyz
mailto:david@fomo3d.app
mailto:david@madshield.xyz
mailto:wolf@madshield.xyz


Carrot: Program Security Review 19 Dec, 2024

Table of Contents

1. Introduction 3
2. Findings & Recommendations 4

2.1 Informational 4
[CARROT_01] - ​​Incorrect Space Allocation for DriftInsuranceFund Strategy
Initialization 4
[CARROT_02] - ​​Single Oracle Implementation 5

3. Protocol Overview 7
3.2. Program Charts 7

Vault Architecture Flow 7
Asset Management Flow 8
Oracle Integration Flow 9
DeFi Integrations 10

4. Scope and Objectives 12
5. Methodology 13
6. Conclusion 14

2



Carrot: Program Security Review 19 Dec, 2024

1. Introduction
This audit focuses on the Carrot protocol, a Solana-based protocol that creates investment
strategies by integrating with other protocols like Mango Markets, Drift, Klend and Marginfi
as yield sources.

The audit was conducted between 25th September 2024 and 18th December 2024. During
this period, the Carrot program was thoroughly analyzed with particular attention to
cross-program invocations, vault management, and integration security with external
protocols.

This report outlines the audit process, describes the methodology used, and certifies the
program as secure to the best of our knowledge, while also highlighting areas for potential
optimization and enhancement. The audit examines the incentive structures created by the
protocol's strategy system and its interaction with external yield sources.

3



Carrot: Program Security Review 19 Dec, 2024

2. Findings & Recommendations
Our severity classification system adheres to the criteria outlined here.

Severity Level Exploitability Potential Impact Examples

Critical Low to moderate difficulty,
3rd-party attacker Irreparable financial harm Direct theft of funds, permanent

freezing of tokens/NFTs

High
High difficulty, external
attacker or specific user
interactions

Recoverable financial harm Temporary freezing of assets

Medium Unexpected behavior,
potential for misuse

Limited to no financial harm,
non-critical disruption

Escalation of non-sensitive privilege,
program malfunctions, inefficient
execution

Low Implementation varia(nce,
uncommon scenarios

Zero financial implications,
minor inconvenience

Program crashes in rare situations,
parameter adjustments by authorized
entities

Informational N/A Recommendations for
improvement

Design enhancements, best
practices, usability suggestions

In the following, we enumerate some of the findings and issues we discovered and explain
their implications and corresponding resolutions.

Finding Description Severity Level

CARROT_01 Incorrect Space Allocation for DriftInsuranceFund Strategy
Initialization

Informational

CARROT_02 Single Oracle Implementation Informational

No, Critical, High, Medium or Low severities were identified.

4



Carrot: Program Security Review 19 Dec, 2024

2.1 Informational

[CARROT_01] - ​​Incorrect Space Allocation for DriftInsuranceFund Strategy
Initialization

Description
An issue has been identified in the initialization process of the DriftInsuranceFund
strategy within the Carrot protocol. The DriftInsuranceFundStrategyInit struct,
responsible for initializing the strategy account, is allocating an incorrect amount of space.

The cause of this issue lies in the space parameter of the #[account] attribute macro for
the strategy field. Currently, it's using StrategyTypeSelection::DriftSupply to
determine the space allocation, which is inconsistent with the intended
DriftInsuranceFund strategy type.
This mismatch leads to several potential impacts:

Potential Transaction Cost Increase: Solana's rent-burn mechanism, which is based on
the total state size of accounts touched in a transaction, may lead to slightly higher costs
when interacting with this oversized account.

Consistency and Maintenance Issues: The mismatch between the strategy type and its
allocated space could lead to confusion or bugs in future development and maintenance
efforts.

Masked Flexibility Concerns: If the DriftInsuranceFund strategy needs to store more data
in the future, it might inadvertently work due to the extra space, potentially masking
underlying design issues.

Recommendation

To resolve this issue, the space allocation should be corrected to match the intended
strategy type. The fix is straightforward and involves changing the
StrategyTypeSelection enum value used in the space parameter to
DriftInsuranceFund.

This change ensures that the correct amount of space is allocated, aligning the account size
with its intended purpose and optimizing resource usage.

5



Carrot: Program Security Review 19 Dec, 2024

[CARROT_02] - ​​Single Oracle Implementation

Description

Carrot Protocol currently implements Pyth as its sole oracle provider for price feeds,
handling all asset valuations and calculations within the protocol. While Pyth is a reliable
and well-established oracle service, the dependency on a single price feed source presents
a security consideration that warrants attention.
Reliance on a single oracle: ​​The reliance on a single oracle provider introduces several
potential vulnerabilities to the protocol's operations. A single point of failure exists where
any technical issues, network delays, or data inaccuracies in Pyth's service could directly
impact the protocol's ability to accurately value assets and execute operations.

Pyth oracle check : We checked the price feed addresses stored in the account data to
verify if the right ones were used.

Recommendation
Implementing a multi-oracle approach would significantly enhance the protocol's security
and reliability. By integrating additional oracle providers alongside Pyth, the protocol could
implement price cross-validation and establish fallback mechanisms for continuous
operation. This enhancement would provide protection against potential manipulation
attempts and ensure more accurate price discovery through consensus mechanisms.

6



Carrot: Program Security Review 19 Dec, 2024

3. Protocol Overview
Carrot is a decentralized finance protocol built on Solana that introduces a professional
asset management system through its vault architecture. At its core, the protocol operates
through a vault system that acts as a managed fund, allowing users to deposit their assets
while professional managers deploy various investment strategies.

The vault system serves as the foundation of the protocol, managing user deposits and
executing investment strategies. When users deposit their assets into a Carrot vault, they
receive share tokens that represent their proportional ownership of the vault's total assets.
These share tokens are crucial as they track user ownership and ensure fair distribution of
returns generated by the vault's investment activities.

One of Carrot's key features is its multi-asset support system. The protocol can handle
various types of tokens, each tracked through Pyth Network price feeds that provide
real-time valuation data. This price oracle integration is essential for accurate share
calculations and informed strategy decisions, ensuring that user deposits and withdrawals
are processed at fair market values.

The strategy implementation aspect of Carrot is handled by professional managers who
deploy vault assets across different investment opportunities. These strategies are
designed to generate returns for users while maintaining appropriate risk management
through diversification. The vault's authority controls these operations, ensuring that
strategies are executed according to predetermined parameters and risk assessments.

The protocol's share token system is particularly noteworthy as it provides a seamless
mechanism for managing user participation. When users deposit assets, they receive share
tokens proportional to their contribution. These tokens can later be redeemed to withdraw
assets, with the withdrawal amount reflecting their proportion of the vault's total value,
including any returns generated through the deployed strategies.

7



Carrot: Program Security Review 19 Dec, 2024

3.2. Program Charts

Vault Architecture Flow

The vault serves as the central component of Carrot, managing user deposits and strategy
execution. It maintains a collection of supported assets and their corresponding strategies.
When users interact with the vault, it handles share token minting/burning to track
ownership proportions, while the authority manages strategy deployment and execution.

8



Carrot: Program Security Review 19 Dec, 2024

Asset Management Flow

Asset management in Carrot follows a precise flow where user deposits are processed
through value calculations using Pyth oracle price feeds. The protocol calculates share
tokens based on the deposit value relative to the total vault value. For withdrawals, the
process reverses: share tokens are burned, and assets are returned based on the user's
proportional ownership of the vault.

9



Carrot: Program Security Review 19 Dec, 2024

Oracle Integration Flow

Carrot integrates with Pyth oracles for real-time price feeds, essential for accurate asset
valuation. The get_price_usd_from_pyth_oracle function fetches price data from Pyth
oracle accounts, validates the data through account verification, and processes it for asset
value calculations. This price data is crucial for share token calculations and strategy
decisions.

DeFi Integrations

Carrot interfaces with multiple DeFi protocols to execute various strategies:
- Drift & Mango: For perpetual futures and spot trading
- KLend, MarginFi, & Solend: For lending operations and yield generation

10



Carrot: Program Security Review 19 Dec, 2024

Each protocol integration enables specific strategy types, allowing the vault to diversify its
operations across different DeFi opportunities while managing risk through strategy
allocation.

11



Carrot: Program Security Review 19 Dec, 2024

4. Methodology
Given that the program is a vault protocol managing multiple assets, we employed a
comprehensive and systematic methodology to test the protocol's constraints and
behavior. Our primary approach involved analyzing the Pyth oracle integration and asset
management system to validate the protocol's security and reliability.

This methodology allowed us to observe how the protocol would operate in real-world
conditions, especially focusing on the oracle price feed implementation and asset value
calculations. This security-focused approach was essential for evaluating the safety and
reliability of the protocol's core components.

We conducted detailed code analysis of oracle interactions and asset management
functions. This included reviewing the implementation of price feeds, asset value
calculations, oracle account validation, and the security of vault operations across different
scenarios.

The code review focused specifically on the oracle integration implementation, examining
how price feeds are validated and used within the protocol. This helped in identifying
potential security considerations that should be addressed, particularly around oracle
account validation and multi-oracle implementation possibilities.

Throughout the analysis, we documented security observations and potential
improvements to enhance the protocol's reliability and safety, ensuring robust operation in
production environments.

12



Carrot: Program Security Review 19 Dec, 2024

5. Scope and Objectives

The primary objectives of the audit are defined as:

● Minimizing the possible presence of any critical vulnerabilities in the program. This
would include detailed examination of the code and edge case scrutinization to find
as many vulnerabilities.

● 2-way communication during the audit process. This included for Mad Shield to
reach a perfect understanding of the design of the system and the goals of the
team.

● Provide clear and thorough explanations of all vulnerabilities discovered during the
process with potential suggestions and recommendations for fixes and code
improvements.

● Clear attention to the documentation of the vulnerabilities with an eventual
publication of a comprehensive audit report to the public audience for all
stakeholders to understand the security status of the programs.

The Vault has delivered the program to Mad Shield at the following Github repositories.

Repository URL https://github.com/DeFi-Carrot/protocol/

Commit (start of audit) e0e7cdf57ec177187d820e02fa463a1a8a1aa125

Commit (end of audit) 10e4c86caf42e18b47f5222628c1872f1a41f2a4

Tab1. Audit Marks of Carrot

13



Carrot: Program Security Review 19 Dec, 2024

6. Conclusion
Mad Shield conducted an extensive audit of Carrot, utilizing a hands-on methodology that
prioritizes a detailed, immersive review of the program. Our team’s approach is rooted in
active collaboration, working closely with each unique project to identify potential security
risks and mitigate vulnerabilities effectively.

Mad Shield’s dedication to advancing auditing techniques is clear throughout our process.
We consistently apply innovative strategies, allowing us to analyze the code at a granular
level, simulate real-world scenarios, and uncover potential risks that traditional audits
might miss.

No critical vulnerabilities were identified during the Carrot audit, and all findings were
promptly communicated to the development team. Our recommendations focus on
strengthening the codebase to enhance long-term security and resilience. Mad Shield
remains committed to setting new standards in smart contract auditing.

14


